Intramuscular EMG Decomposition Basing on Motor Unit Action Potentials Detection and Superposition Resolution
نویسندگان
چکیده
A novel electromyography (EMG) signal decomposition framework is presented for the thorough and precise analysis of intramuscular EMG signals. This framework first detects all of the active motor unit action potentials (MUAPs) and assigns single MUAP segments to their corresponding motor units. MUAP waveforms that are found to be superimposed are then resolved into their constituent single MUAPs using a peel-off approach and similarly assigned. The method is composed of six stages of analytical procedures: preprocessing, segmentation, alignment and feature extraction, clustering and refinement, supervised classification, and superimposed waveform resolution. The performance of the proposed decomposition framework was evaluated using both synthetic EMG signals and real recordings obtained from healthy and stroke participants. The overall detection rate of MUAPs was 100% for both synthetic and real signals. The average accuracy for synthetic EMG signals was 87.23%. Average assignment accuracies of 88.63 and 94.45% were achieved for the real EMG signals obtained from healthy and stroke participants, respectively. Results demonstrated the ability of the developed framework to decompose intramuscular EMG signals with improved accuracy and efficiency, which we believe will greatly benefit the clinical utility of EMG for the diagnosis and rehabilitation of motor impairments in stroke patients.
منابع مشابه
Analysis of intramuscular electromyogram signals.
Intramuscular electromyographic (EMG) signals are detected with needles or wires inserted into muscles. With respect to non-invasive techniques, intramuscular electromyography has high selectivity for individual motor unit action potentials and is thus used to measure motor unit activity. Decomposition of intramuscular signals into individual motor unit action potentials consists in detection a...
متن کاملComparative Analysis of Wavelet-based Feature Extraction for Intramuscular EMG Signal Decomposition
Background: Electromyographic (EMG) signal decomposition is the process by which an EMG signal is decomposed into its constituent motor unit potential trains (MUPTs). A major step in EMG decomposition is feature extraction in which each detected motor unit potential (MUP) is represented by a feature vector. As with any other pattern recognition system, feature extraction has a significant impac...
متن کاملOnline Intramuscular EMG Decomposition with Varying Number of Active Motor Units
This paper deals with the online decomposition of intramuscular electromyographic (iEMG) signals. A Markov model is proposed, which takes into account a varying number of firing motor neurons. A Bayes filter detects online the firing motor units by using a dictionary of approximated motor unit action potentials waveforms, and estimates precisely the action potential shapes and the respective fi...
متن کاملA novel method for automated EMG decomposition and MUAP classification
OBJECTIVE This paper proposes a novel method for the extraction and classification of individual motor unit action potentials (MUAPs) from intramuscular electromyographic signals. METHODOLOGY The proposed method automatically detects the number of template MUAP clusters and classifies them into normal, neuropathic or myopathic. It consists of three steps: (i) preprocessing of electromyogram (...
متن کاملTechniques for Decomposition of EMG Signals
The electrical signals produced by the muscles and nerves are analyzed to assess the state of neuromuscular function in subjects with suspected neuromuscular disorders. The repetitive activation of several individual motor units (MUs) results in a superposed pulse train and constitutes the electromyogram (EMG) signal. The analysis of the EMG is based on its basic constituent i.e. motor-unit act...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2018